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Introduction

We reserve the term “AdS-CFT correspondence” for the field
theoretical model that was given by Witten [20] and Polyakov et al.
[14] to capture some essential features of Maldacena’s Conjecture
[16]. It provides the generating functional for conformally invariant
Schwinger functions in D-dimensional Minkowski space by using a
classical action I[φAdS] of a field on D+1-dimensional Anti-deSitter
space. In contrast to Maldacena’s Conjecture which involves String
theory, gravity, and supersymmetric large N gauge theory, the AdS-
CFT correspondence involves only ordinary quantum field theory
(QFT), and should be thoroughly understandable in corresponding
terms.

In these lectures, we want to place AdS-CFT into the general
context of QFT. We are not so much interested in the many impli-
cations of AdS-CFT, than rather in the question “how AdS-CFT
works”. We shall discuss in particular

• why the AdS-CFT correspondence constitutes a challenge for
orthodox QFT
• how it can indeed be (at least formally) reconciled with the

general requirements of QFT
• how the corresponding (re)interpretation of the AdS-CFT cor-

respondence matches with other, more conservative, connec-
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tions between QFT on AdS and conformal QFT, which have
been established rigorously.

The lectures are meant to be introductory. When we refer to
rigorous methods and results in QFT, our exposition never has the
ambition of being rigorous itself. We shall avoid all technical details,
but only point out some of the features which are crucial for some
arguments but often enough neglected.

To prepare the ground, we shall in the first lecture remind the
reader of some general facts about QFT (and its formal Euclidean
functional integral approach), with special emphasis on the pas-
sage between real-time QFT and Euclidean QFT, and the positivity
properties which are necessary for the probability interpretation of
quantum theory.

Only in the second lecture, we turn to AdS-CFT, pointing out
its apparent conflict (at a formal level) with positivity. We resolve
this conflict by (equally formally) relating the conformal quantum
field defined by AdS-CFT with a limit of “conventional” quantum
fields which do fulfill positivity.

The third lecture is again devoted to rigorous methods of QFT,
which become applicable to AdS-CFT by virtue of the result of the
second lecture, and which concern both the passage from AdS to
CFT and the converse passage.

To keep the exposition simple, and in order to emphasize the
extent to which the AdS-CFT correspondence can be regarded as a
model-independent connection, we shall confine ourselves to bosonic
(mostly scalar) fields (with arbitrary polynomial couplings), and
never mention the vital characteristic problems pertinent to gauge
(or gravity) theories.

1 First lecture: QFT

A fully satisfactory (mathematically rigorous) QFT must fulfill a
number of requirements. These are, in brief:
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• Positive definiteness of the Hilbert space inner product.
• Local commutativity of the fields1 φq at spacelike separation.
• A unitary representation of the Poincaré group, implementing

covariant transformations of the fields.
• Positivity of the energy spectrum in one, and hence every in-

ertial frame.
• Existence (and uniqueness) of the ground state = vacuum Ω.

Clearly, for one reason or another, one may be forced to relax one or
the other of these requirements, but there should be good physical
motivation to do so, and sufficient mathematical structure to ensure
a safe physical interpretation of the theory. E.g., one might relax
the locality requirement at very short distances where it has not
been tested directly, as long as macrocausality is maintained; or
one might admit modifications of the relativistic energy-momentum
relation at very high energies. But it is known that there are very
narrow limitations on such scenarios. Hilbert space positivity may
be absent at intermediate steps, notably in covariant approaches to
gauge theory, but it is indispensable if one wants to saveguard the
probabilistic interpretation of expectation values of observables.

The above features are reflected in the properties of the vacuum
expectation values of field products

W (x1, . . . , xn) = (Ω, φq(x1) . . . φq(xn)Ω), (1.1)

considered as “functions” (in fact, distributions) of the field coordi-
nates xi, known as the Wightman distributions.

Local commutativity and covariance appear as obvious symmetry
properties under permutations (provided xi and xi+1 are at spacelike
distance) and Poincaré transformations, respectively. The unique-
ness of the vacuum is a cluster property (= decay behaviour at large
spacelike separations). Further consequences for the Wightman dis-
tributions will be described in the sequel.

1We use the notation φq in order to distinguish the real-time quantum field (an operator[-
valued distribution] on the Hilbert space) from the Euclidean field φE (a random variable) and
its representation by a functional integral with integration variable φ, see below.
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1.1 The Wick rotation

The properties of Wightman functions allow for the passage to Eu-
clidean “correlation functions”, known as the “Wick rotation”. Be-
cause this passage and the existence of its inverse justify the most
popular Euclidean approaches to QFT, let us study in more detail
what enters into it.

The first step is to observe that by the spectrum condition, the
Wightman distributions can be analytically continued to complex
points zi = xi + iyi by replacing the factors e−iki·xi in the Fourier
representation by e−iki·zi, provided zi − zi+1 have future timelike
imaginary parts (the “forward tube”). The analytically continued
distributions are in fact analytic functions in the forward tube. The
reason is that the momenta ki + . . . + kn−1 + kn (being eigenval-
ues of the momentum operator) can only take values in the future
light-cone, so that

∏
i e
−iki·zi = eikn·(zn−1−zn) · ei(kn−1+kn)·(zn−2−zn−1) ·

ei(kn−2+kn−1+kn)·(zn−3−zn−2) · . . . decay rapidly if the imaginary parts of
zi−zi−1 are future timelike, and otherwise would diverge rapidly for
some of the contributing momenta. The Wightman distributions are
thus boundary values (as Im (zi−zi+1)↘ 0 from the future timelike
directions) of analytic Wightman functions.

Together with covariance which implies invariance under the
complex Lorentz group, the analytic Wightman functions can be
extended to a much larger complex region, the “extended domain”.
Unlike the forward tube, the extended domain contains real points
which are spacelike to each other, hence by locality, the Wight-
man functions are symmetric functions in their complex arguments.
This in turn allows to extend the domain of analyticity once more,
and one obtains analytic functions defined in the Bargmann-Hall-
Wightman domain. This huge domain contains the “Euclidean
points” zi = (iτi, ~xi) with real τi, ~xi. Considered as functions of
ξi := (~xi, τi), the Wick rotated functions are the “Schwinger func-
tions” Sn(ξ1, . . . ξn), which are symmetric, analytic at ξi 6= ξj, and
invariant under the Euclidean group.
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It is convenient to “collect” all Schwinger functions in a gener-
ating functional

S[j] :=
∑ 1

n!

∫ (∏
dξi j(ξi)

)
Sn(ξ1, . . . ξn) ≡

〈
e
∫
dξ φE(ξ)j(ξ)

〉
.

(1.2)
Knowledge of S[j] is equivalent to the knowledge of the Schwinger
functions, because the latter are obtained by variational derivatives,

Sn(ξ1, . . . ξn) =
∏

i

δ

δj(ξi)
S[j]|j=0. (1.3)

The generating functional for the “truncated (connected) Schwinger
functions” STn (ξ1, . . . ξn) (products of lower correlations subtracted)
is ST [j] = logS[j].

It should be emphasized that Fourier transformation, Lorentz
invariance, and energy positivity enter the Wick rotation in a cru-
cial way, so that in general curved spacetime, where none of these
features is warranted, anything like the Wick rotation may by no
means be expected to exist. Hence, we have

Lesson 1. Euclidean QFT is a meaningful framework, re-
lated to some real-time QFT, only provided there is sufficient
spacetime symmetry to establish the existence of a Wick ro-
tation.

AdS is a spacetime where the Wick rotation can be established
[4]. The reason is that AdS may be viewed as a warped product of
Minkowski spacetime R1,D−1 with R+, and the AdS group contains
the Poincaré group. Namely, AdS is the hyperbolic surface in R2,D

given by X ·X = 1 in the metric of R2,D. In Poincaré coordinates,

X =

(
z

2
+

1− xµxµ
2z

,
xµ

z
,−z

2
+

1 + xµx
µ

2z

)
(z > 0). (1.4)

In these coordinates, the metric is

ds2 = z−2(ηµνdx
µdxν − dz2), (1.5)
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hence for each fixed value of z, it is a multiple of the Minkowski
metric.

The group SO(2, D) of isometries of AdS is also the conformal
group of Minkowski spacetime R1,D−1. The z-preserving subgroup
acts on the coordinates xµ like the Poincaré group. (The rest of
the group are transformations which act non-linearly on the coordi-
nates z and x in such a way that the boundary z = 0 is preserved,
and its points (z = 0, x) transform like scale and special conformal
transformations of x.)

Thus, the Wick rotation can be performed in the variables xµ

alone, leading to the “Euclidean points” = points of Euclidean AdS

Ξ =

(
−z

2
+

1− |ξ|2
2z

,
ξµ

z
,
z

2
+

1 + |ξ|2
2z

)
(z > 0), (1.6)

which satisfy Ξ · Ξ = 1 in the metric of R1,D+1.

1.2 Reconstruction and positivity

By famous reconstruction theorems [19, 17], the Wightman distri-
butions or the Schwinger functions completely determine the quan-
tum field, including its Hilbert space. For the reconstruction of
the Hilbert space, one defines the scalar product between improper
states φ(x1) . . . φ(xn)Ω to be given by the Wightman distributions.
Therefore, the following positivity property of these distributions is
absolutely crucial: Let P = P [φq] denote any polynomial in smeared
fields. Then one has the positivity

(Ω, P ∗PΩ) = ||PΩ||2 ≥ 0. (1.7)

(It could be zero because, e.g., P contains a commutator at spacelike
distance such that P = 0, or the Fourier transforms of the smearing
functions avoid the spectrum of the four momenta such that PΩ =
0.) On the other hand, inserting the smeared fields for P , (Ω, P ∗PΩ)
is a linear combination of smeared Wightman distributions. Thus,
every linear combination of smeared Wightman distributions which
can possibly arise in this way must be non-negative.
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This property translates, via the Wick rotation, into a prop-
erty called “reflection positivity” of the Schwinger functions: Let
P = P [φE] denote a polynomial in Euclidean fields smeared in a
halfspace τi > 0, and θ(P ) the same polynomial smeared with the
same functions reflected by τi 7→ −τi. Then

〈
θ(P )∗P

〉
≥ 0. (1.8)

This expression is a linear combination of smeared Schwinger func-
tions. Reflection positivity means that every linear combination
which can possibly arise in this way must be non-negative.

As an example for the restrictivity of reflection positivity, we
consider the 2-point function of a Euclidean conformal scalar field
of scaling dimension ∆, S2(ξ1, ξ2) = |ξ1−ξ2|−2∆. Ignoring smearing,
we choose P [φE] = φE(τ2 , 0)− φE(τ2 , x) and obtain

〈
θ(P )∗P

〉
= 2

[
τ−2∆ − (τ 2 + x2)−∆

]
. (1.9)

Obviously, this is positive iff ∆ > 0. This is the unitarity bound for
conformal fields in 2 dimensions. (More complicated configurations
of Euclidean points in D > 2 dimensions give rise to the stronger
bound ∆ ≥ D−2

2 .)

The positivity requirements (1.7) resp. (1.8) are crucial for the
reconstructions of the real-time quantum field, which start with
the construction of the Hilbert space by defining scalar products
on suitable function spaces in terms of Wightman or Schwinger
functions of the form (1.7) resp. (1.8).

As conditions on the Wightman or Schwinger functions, the pos-
itivity requirements are highly nontrivial. It is rather easy to con-
struct Wightman functions which satisfy all the requirements except
positivity, and it is even more easy to guess funny Schwinger func-
tions which satisfy all the requirements except reflection positivity.
In fact, the remaining properties are only symmetry, Euclidean in-
variance, and some regularity and growth properties, which one can
have almost “for free”.
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But without the positivity, these functions are rather worthless.
From non-positive Wightman functions one would reconstruct fields
without a probability interpretation, and reconstruction from non-
positive Schwinger functions would not even yield locality and pos-
itive energy, due to the subtle way the properties intervene in the
Wick rotation. In particular, the inverse Wick rotation uses meth-
ods from operator algebras which must not be relied on in “Hilbert
spaces” with indefinite metric.

Lesson 2. Schwinger functions without reflection positivity
have hardly any physical meaning.

1.3 Functional integrals

The most popular way to obtain Schwinger functions which are at
least in a formal way reflection-positive, is via functional integrals
[11]: the generating functional is

S[j] := Z−1

∫
Dφ e−I[φ] · e

∫
dξ φ(ξ)j(ξ), (1.10)

where I[φ] is a Euclidean action of the form 1
2(φ,Aφ)+

∫
dξV (φ(ξ))

with a quadratic form A which determines a free propagator, and
an interaction potential V (φ). The normalization factor is Z =∫
Dφ e−I[φ].

Consequently, the Schwinger functions are

Sn(ξ1, . . . ξn) := Z−1

∫
Dφ φ(ξ1) . . . φ(ξn) e−I[φ]. (1.11)

Thus, one may think of them as the moments

Sn(ξ1, . . . ξn) =
〈
φE(ξ1) . . . φE(ξn)

〉
, (1.12)

of random variables φE(ξ), such that the functional integration vari-
ables φ are the possible values of φE with the probability measure
Dµ[φ] = Z−1Dφ e−I[φ]. (That Schwinger functions are moments of
a measure, i.e., their representability by a functional integral, is not
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necessary by general principles, and this property usually gets lost
when they are extended as distributions to coinciding points.)

The difficult part in constructing a Euclidean QFT along these
lines is, of course, to turn the formal expressions (1.10) or (1.11)
into well-defined quantities [12, 11]. This problem can be attacked
in several different ways (e.g., perturbative or lattice approxima-
tions, or phase space cutoffs of the measure) which all involve the
renormalization of formally diverging quantities. We shall by no
means enter the problem(s) of renormalization in these lectures,
but we emphasize

Lesson 3. The challenge of constructive QFT via functional
integrals is to define the measure, in such a way that its
formal benefits are preserved.

Not the least among the “formal benefits” is reflection positiv-
ity which, as we have seen, is necessary to entail locality, energy
positivity, and Hilbert space positivity for the reconstructed real-
time field. Let us display the formal argument why the prescription
(1.11) fulfills reflection positivity. It consists in separating the in-
teraction part from the quadratic part, and splitting

e−
∫
dξ V (φ(ξ)) = e−

∫
τ<0

dξ V (φ(ξ)) · e−
∫
τ>0

dξ V (φ(ξ)) ≡ θ(F )∗F (1.13)

with ξ = (~x, τ) and F = F [φ] = e−
∫
τ>0

dξ V (φ(ξ)). Then〈
θ(P )∗P

〉
=
〈
θ(FP )∗FP

〉
0

(1.14)

where 〈. . .〉0 is the Gaussian expectation value defined with the
quadratic part 1

2(φ,Aφ) of the action, which is assumed to fulfill
reflection positivity. Viewing F as an exponential series of smeared
field products, 〈θ(FP )∗FP 〉0 and hence 〈θ(P )∗P 〉 is positive. We
see that it is important that the potential is “local” in the sense
that it depends only on the field at a single point, in order to allow
the split (1.13) into positive and negative Euclidean “time”.

Even with the most optimistic attitude towards Lesson 3 (“noth-
ing goes wrong upon renormalization”), we shall retain from Lesson
2 as a guiding principle:
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Lesson 4. A functional integral should not be trusted as
a useful device for QFT if it violates reflection positivity
already at the formal level.

1.4 Semiclassical limit and large N limit

For later reference, we mention some facts concerning the effect of
manipulations of generating functionals (irrespective how they are
obtained) on reflection positivity of the Schwinger functions.

The product S[j] = S(1)[j]S(2)[j] of two (or more) reflection-
positive generating functional is another reflection-positive generat-
ing functional. In fact, because the truncated Schwinger functions
are just added, the reconstructed quantum field equals φ(1)⊗1+1⊗
φ(2) defined on H = H(1) ⊗H(2), or obvious generalizations thereof
for more than two factors. In particular, positivity is preserved if
S[j] is raised to a power ν ∈ N.

The same is not true for a power 1/ν with ν ∈ N: a crude way to
see this is to note that reflection positivity typically includes as nec-
essary conditions inequalities among truncated Schwinger n-point
functions STn of the general structure ST4 ≤ ST2 S

T
2 , while raising S[j]

to a power p amounts to replace ST by p · ST .

This remark has a (trivial) consequence concerning the semiclas-
sical limit: let us reintroduce the unit of action ~ and rewrite

S[j] = Z−1

∫
Dφ e−

1
~I[j;φ] (1.15)

where I[j;φ] = I[φ]−
∫
φj is the action in the presence of a source j.

Appealing to the idea that when ~ is very small, the functional in-
tegral is sharply peaked around the classical minimum φs-cl = φs-cl[j]
of this action, let us replace ~ by ~/ν and consider the limit ν →∞.
Then we may expect (up to irrelevant constants)

Ss-cl[j] := e−
1
~I[j;φs-cl[j]] = lim

ν→∞

[∫
Dφ e−

ν
~I[j;φ]

]1/ν

. (1.16)
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This generating functional treated perturbatively, gives the tree
level (semiclassical) approximation to the original one, all loop dia-
grams being suppressed by additional powers of ~/ν.

The functional integral in square brackets is “as usual” with ~/ν
in place of ~, hence we may assume that it satisfies reflection positiv-
ity. But we have no reason to expect Ss-cl[j] to be reflection-positive,
because of the presence of the power 1/ν. Thus Ss-cl[j] does not gen-
erate reflection-positive Schwinger functions, and hence no accept-
able quantum field. This is, clearly, no surprise, because a classical
field theory is not a quantum field theory.

A variant of this argument is less trivial, concerning the large N
limit. If one raises S[j] to some power N , the truncated Schwinger
functions are multiplied by the factor N , and diverge as N → ∞.
Rescaling the field by N−

1
2 stabilizes the 2-point function (assum-

ing the 1-point function 〈φE〉 to vanish), but suppresses all higher
truncated n-point functions, so that the limit N → ∞ becomes
Gaussian, i.e., one ends up with a free field. To evade this con-
clusion, one has to “strengthen” the interaction at the same time
to counteract the suppression of higher truncated correlations. Let
us consider S[j] of the functional integral form. Raising S to the
power N , amounts to integrate over N independent copies of the
field (DNφ = Dφ1 . . . DφN) with interaction V (φ) =

∑
i V (φi) and

coupling to the source j ·∑φi. One way to strengthen the interac-
tion is to replace, e.g., V (φ) = λ

∑
i φ

4
i by V (φ) = λ(

∑
i φ

2
i )

2 giving
rise to much more interaction vertices coupling the N previously
decoupled copies of the field among each other. At the same time,
the action acquires an O(N) symmetry, so one might wish to cou-
ple the sources also only to O(N) invariant fields, and replace the
source term by j ·∑φ2

i , hence

IN [j, φ] =
1

2
(φ,Aφ) +

∫
λ(φ2)2 +

∫
j · φ2. (1.17)

We call the resulting functional integral SN [j].

All these manipulations maintain the formal reflection positivity
of SN [j] at any finite value of N . An inspection of the Feynman
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rules for the perturbative treatment shows that now all truncated
n-point functions still carry an explicit factor of N , and otherwise
have a power series expansion in N and λ where each term has less
powers of N than of λ. Introducing the ’t Hooft coupling θ = Nλ,
this yields an expansion in θ and 1/N . Fixing θ and letting N →∞,
suppresses the 1/N terms, so that the asymptotic behaviour at large
N is

SN [j] ∼ eN [ST∞(θ)+O(1/N)]. (1.18)

To obtain a finite non-Gaussian limit, one has to take

S∞[j] := lim
N→∞

SN [j]1/N = eS
T
∞(θ). (1.19)

But this reintroduces the fatal power 1/N which destroys reflection
positivity. According to Lesson 4, this means

Lesson 5. The large N limit of a QFT is not itself a QFT.

It is rather some classical field theory, for the same reason as
before: namely the explicit factor N combines with the tacit inverse
unit of action 1/~ in the exponent of (1.18) to the inverse of an
“effective” unit of action ~/N → 0. What large N QFT has to say
about QFT, is the (divergent) asymptotic behaviour of correlations
as N gets large.

2 Lecture 2: AdS-CFT

2.1 A positivity puzzle

The AdS-CFT correspondence, which provides the generating func-
tional for conformally invariant Schwinger functions from a classical
action I on AdS, was given by Witten [20] and Polyakov et al. [14]
as a “model” for Maldacena’s Conjecture. We shall discuss this for-
mula in the light of the previous discussions about QFT, in which
it appears indeed rather puzzling.

The formula is essentially classical, because it is supposed to
capture only the infinite N limit of the Maldacena conjecture.
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The general structure of the formula is

SAdS-CFT
s-cl [j] := e−I[φAdS[j]] (2.1)

where I[φAdS] is an AdS-invariant action of a field on AdS, and
φAdS[j] is the (classical) minimum of the action I under the restric-
tion that φAdS has prescribed boundary values j. More precisely,
introducing the convenient Poincaré coordinates (z > 0, ξ ∈ RD)
of Euclidean AdS such that the boundary z = 0 is identified with
D-dimensional Euclidean space, it is required that the limit

∂φAdS(ξ) := lim
z→0

z−∆φAdS(z, ξ) (2.2)

exists, and coincides with a prescribed function j(ξ).

It follows from the AdS-invariance of the action I[φAdS] (and the
assumed AdS-invariance of the functional measure) that the vari-
ational derivatives of SAdS-CFT

s-cl [j] with respect to the source j are
conformally covariant functions, more precisely, they transform like
the correlation functions of a Euclidean conformal field of scaling
dimension (“weight”) ∆. Thus, symmetry and covariance are auto-
matic. But how about reflection positivity?

To shed light on this aspect [7], we appeal again to the idea that
a functional integral is sharply peaked around the minimum of the
action, when the unit of action becomes small, and rewrite S[j] as

SAdS-CFT
s-cl [j] = lim

ν→∞

[ ∫
DφAdSe−νI[φAdS] · δ

[
∂φAdS − j

] ]1/ν

(2.3)

where a formal functional δ-function restricts the integration to
those field configurations whose boundary limit (2.2) exists and co-
incides with the given function j(ξ). We see that ν takes the role
of the inverse unit of action 1/~ in (2.3), so that ν →∞ signals the
classical nature of this limit, hence of the original formula.

Now, there are two obvious puzzles concerning formal reflection
positivity of this generating functional. The first is the same which
was discussed in Sect. 1.4, namely the presence of the inverse power
1/ν, which arises due to the classical nature of the formula. Even if
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the functional integral in square brackets were positive, this power
most likely would spoil this property. (In fact, the correlation func-
tions obtained from SAdS-CFT

s-cl can be seen explicitly to have logarith-
mic rather than power-like short-distance singularities, and hence
manifestly violate positivity [15].)

The obvious cure (as it is of course also suggested in the original
papers [20, 14]) is to interpret the AdS-CFT formula (2.1) only as a
semiclassical approximation to the “true” (quantum) formula, and
consider instead the quantum version

〈
e
∫
dξ φAdS-CFT

E (ξ)j(ξ)
〉
≡ SAdS-CFT[j] :=

∫
DφAdS e−I[φAdS]·δ

[
∂φAdS − j

]

(2.4)
as the generating functional of conformally invariant Schwinger func-
tions of a Euclidean QFT on RD.

But the second puzzle remains: for this expression, the formal
argument for reflection positivity of functional integrals, presented
in Sect. 1.3, fails: that argument treats the exponential of the in-
teraction part of the action as a field insertion in the functional in-
tegrand, and it was crucial that field insertions φ in the functional
integral amount to the same insertions of the random variable φE
in the expectation value 〈. . .〉, achieved by variational derivatives
of the generating functional S with respect to the source j. But
this property (1.11) is not true for the AdS-CFT functional integral
SAdS-CFT where the coupling to the source is via a δ-functional rather
than an exponential!

So why should one believe that the quantum AdS-CFT generat-
ing functional satisfies reflection positivity, so as to be acceptable for
a conformal QFT on the boundary? Surprisingly enough, explicit
studies of AdS-CFT Schwinger functions, computing the operator
product expansion coefficients of the 4-point function at tree level
[15], show no signs of manifest positivity violation which could not
be restored in the full quantum theory (i.e., regarding the logarith-
mic behaviour as first order terms of the expansion of anomalous
dimensions). Why is this so?

14



An answer is given [7] by a closer inspection of the Feynman
rules which go with the functional δ function in the perturbative
treatment of the functional integral. For simplicity, we consider a
single scalar field with quadratic Klein-Gordon action

∫
φAdS(−�+

M 2)φAdS and a polynomial self-interaction. As usual, the Feynman
diagrams for truncated n-point Schwinger functions are connected
diagrams with n exterior lines attached to the boundary points ξi,
and with vertices according to the polynomial interaction and inter-
nal lines connecting the vertices. Each vertex involves an integration
over AdS. (For our considerations it is more convenient to work in
configuration space rather than in momentum space.) However, the
implementation of the functional δ-function, e.g., by the help of an
auxiliary field: δ(∂φAdS− j) =

∫
Db ei

∫
b(ξ)(∂φAdS(ξ)−j(ξ)), modifies the

propagators. One has the bulk-to-bulk propagator Γ(z, ξ; z ′, ξ′) con-
necting two vertices, the bulk-to-boundary propagator K(z, ξ; ξ ′)
connecting a boundary point with a vertex, and the boundary-to-
boundary propagator β(ξ; ξ′) which coincides with the tree level
2-point function.

The precise determination of these propagators gives the follow-
ing result.

Γ equals the Green function G+ of the Klein-Gordon operator
which behaves ∼ z∆+ near the boundary, where

∆± =
D

2
±
√
D2

4
+M 2. (2.5)

It is a hypergeometric function of the Euclidean AdS distance. K
is a multiple of the boundary limit limz′→0 z

′−∆· in the variable z′ of
G+(z, ξ; z′, ξ′), and β is a multiple of the double boundary limit in
both variables z and z′ of G+ [1]:

Γ = G+, K = c1·lim
z→0

z−∆+G+, β = c2·lim
z→0

z−∆+ lim
z′→0

z′−∆+G+

(2.6)
with certain numerical constants c1 and c2. Specifically [7],

c1 = 2∆+ −D =
√
D2 + 4M 2, (2.7)
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and, as will be crucial for the sequel,

c2 = c2
1. (2.8)

Now, let us consider the conventional (as in Sect. 1.3) functional
integral for a Euclidean field on AdS

SAdS[J ] = Z−1

∫
DφAdSe−I[φAdS]e

∫ √
g φAdSJAdS

, (2.9)

choosing G+(z, ξ; z′, ξ′) as the propagator defining the Gaussian
functional measure. Its perturbative Schwinger functions are sums
over ordinary Feynman graphs with all lines given by G+. Taking
the simultaneous boundary limits limzi→0 z

−∆+

i (·) of the Schwinger
functions in all their arguments, one just has to apply the bound-
ary limit to the external argument of each external line. This yields
bulk-to-bulk, bulk-to-boundary and boundary-to-boundary propa-
gators

G+, H+ = lim
z→0

z−∆+G+, α+ = lim
z→0

z−∆+ lim
z→0

z′−∆+G+.

(2.10)

Comparison of (2.6) and (2.10) implies for the resulting Schwinger
functions

SAdS-CFT
n (ξ1, . . . , ξn) = cn1 ·

(∏

i

lim
zi→0

z
−∆+

i

)
SAdS
n (z1, ξ1, . . . zn, ξn)

(2.11)
where it is crucial that c2 = c2

1 because each external end of a line
must come with the same factor.

In other words, we have shown that the Schwinger functions gen-
erated by the functional integral (2.4) formally agree (graph by
graph in unrenormalized perturbation theory) with the boundary
limits of those generated by (2.9). The latter satisfy reflection pos-
itivity by the formal argument of Sect. 1.3, generalized to AdS.
Taking the joint boundary limit preserves positivity, because this
step essentially means that the smeared fields involved in P in (1.8)
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are smeared over the boundary z = 0 only. Thus, (2.4) indeed
satisfies reflection positivity, inspite of its appearance.

Because the Wick rotation affecting the Minkowski coordinates
commutes with the boundary limit in z, we conclude that the same
relation (2.11) also holds for the Wightman functions, and hence
for the reconstructed real time quantum fields:

φAdS-CFT
q (x) = c1 · ∂φAdS

q (x) ≡ c1 · lim
zn→0

z−∆+φAdS
q (z, x) (2.12)

x ∈ D-dimensional Minkowski spacetime. This relation describes
the restriction of an AdS covariant field to its timelike boundary [3],
and generalizes the well-known fact that Poincaré covariant quan-
tum fields can be restricted to timelike hypersurfaces, giving rise
to quantum fields in lower dimensions, see Sect. 3.1. Moreover, be-
cause the AdS field (formally) satisfies reflection positivity, so does
its boundary restriction.

We have established the identification (2.11), (2.12) for symmet-
ric tensor fields of arbitrary rank [13] (with arbitrary polynomial
couplings), see the Appendix. Although we have not considered an-
tisymmetric tensors nor spinor fields [6], there is reason to believe
that this remarkable conclusion is true in complete generality.

Lesson 6. Quantum fields defined by AdS-CFT are the
boundary restrictions (limits) of AdS fields quantized con-
ventionally on the bulk (with the same classical action).

We want to mention that in the semiclassical approximation
(2.1), one has the freedom to partially integrate the classical quadratic
action and discard boundary contributions, which are of course
quadratic in j and hence contribute only to the tree level 2-point
function. This kind of ambiguity has been settled previously [10]
by imposing Ward identities on the resulting correlation functions.
The normalization c2 of the tree level 2-point function, obtained
quite naturally by the method mentioned above, precisely matches
the normalization obtained by the Ward identity method.

Let us look at this from a different angle. Changing the tree level
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2-point function amounts to multiplication of the generating func-
tional by a Gaussian. Thus, any different normalization would add
(as in Sect. 1.4) a Gaussian (free) field to the conformal Minkowski
field ∂φAdS

q . Not surprisingly, the sum would violate Ward identities,
which are satisfied by the field without the extra Gaussian.

3 Lecture 3: Brane restrictions and AdS-CFT

We want to discuss the results obtained by formal reasoning in the
previous lecture, in the light of exact results on QFT.

3.1 Brane restrictions

Quantum fields may be restricted to timelike hypersurfaces [5]. This
is a non-trivial statement since they are distributions which become
operators only after smearing with smooth test functions, so it is not
obvious that one may fix one of the spacetime coordinates to some
value. Indeed, t = 0 fields in general do not exist due to renormal-
ization. However, it is possible to fix one of the spacelike coordinates
thanks to the energy positivity, by doing so in the analytically con-
tinued Wightman functions in the forward tube, which gives other
analytic functions whose real-time limits Im (zi− zi+1)↘ 0 exist as
distributions in a spacetime of one dimension less.

The restricted field inherits locality (in the induced causal struc-
ture of the hypersurface), Hilbert space positivity (because the
Hilbert space does not change in the process), and covariance. How-
ever, only the subgroup which preserves the hypersurface may be
expected to act geometrically on the restricted field.

This result, originally derived for Minkowski spacetime [5], has
been generalized to AdS in [2]. Here, the warped product structure
implies that each restriction to a z = const. hypersurface (“brane”)
gives a Poincaré covariant quantum field in Minkowski spacetime.
One thus obtains a family of such fields, φz(x) := φAdS(z, x), defined
on the same Hilbert space. Moreover, because spacelike separation
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in the Minkowski coordinates alone implies spacelike separation in
AdS, the fields of this family are mutually local among each other.
Even more, φz(x) commute with φz′(x

′) also at timelike distance
provided (x− x′)µ(x− x′)µ < (z − z′)2.

3.2 AdS → CFT as QFT on the limiting brane

Now assume in addition that the Wightman distributions WAdS
n of

a (scalar) quantum field on AdS admit a finite limit
∏

( lim
zi→0

z−∆
i )WAdS

n (z1, x1; . . . ; zn, xn) =: Wn(x1, . . . , xn) (3.1)

for some value of ∆. It was proven [3] that these limits define a
(scalar) Wightman field on Minkowski spacetime, which may be
written as

φ(x) = lim
z→0

z−∆φAdS(z, x). (3.2)

In addition to the usual structures, this field inherits conformal co-
variance from the AdS covariance of φAdS, whose weight ∆ emerges
through the limit limz→0 z

−∆(·).
None of the fields φz (z = const. 6= 0) is conformally covariant

because its family parameter z sets a scale; hence the boundary
limit may be re-interpreted as a scaling limit within a family of
non-scale-invariant quantum fields.

Comparing the rigorous formula (3.2) with the conclusion (2.12)
obtained by formal reasoning with unrenormalized Schwinger func-
tions, we conclude

Lesson 7. The prescription for the AdS-CFT correspon-
dence coincides with a special instance of the general scheme
of brane restrictions, admitted in QFT.

3.3 AdS ← CFT by holographic reconstruction

In view of the preceding discussion, the inverse direction AdS ←
CFT amounts to the reconstruction of an entire family of Wightman

19



fields φz (z ∈ R+) from a single member φz=0 of that family, with
the additional requirement that two members of the family commute
at spacelike distance in AdS which involves the family parameters
z, z′. This is certainly a formidable challenge, and will not always
be possible. We first want to illustrate this by a free field, and then
turn to a more abstract treatment of the problem in the general
case.

Let us consider [3, 8] a canonical Klein-Gordon field of mass M
on AdS. The “plane wave” solutions of the Klein-Gordon equation
are the functions

zD/2Jν(z
√
k2)e±ik·x, (3.3)

where ν = ∆−D/2 =
√
D2/4 +M 2, and the Minkowski momenta

range over the entire forward lightcone V+. It follows that the 2-
point function is

〈ΩφAdS(z, x)φAdS(z′, x′)Ω〉 ∼
∼ (zz′)D/2

∫

V+

dDkJν(z
√
k2)Jν(z

√
k2)e−ik(x−x′) ∼

∼ (zz′)D/2
∫

R+

dm2Jν(zm)Jν(z
′m)Wm(x− x′)(3.4)

(ignoring irrelevant constants throughout), where Wm is the massive
2-point function in D-dimensional Minkowski spacetime.

Restricting to any fixed value of z, we obtain the family of fields
φz(x) which are all different “superpositions” of massive Minkowski
fields with Källen-Lehmann weights dµz(m

2) = dm2Jν(zm)2. Such
fields are known as “generalized free fields”. Using the asymptotic
behavior of the Bessel functions Jν(u) ∼ uν at small u, the boundary
field φ0 turns out to have the Källen-Lehmann weight dµ0(m

2) ∼
m2νdm2.

In order to reconstruct φz(x) from φ0(x), one has to “modulate”
its weight function, which can be achieved with the help of a pseudo-
differential operator:

φz(x) ∼ z∆ · jν(−z2�)φ0(x) (3.5)
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where jν is the function jν(u
2) = u−νJν(u) on R+. Note that the

operators jν(−z2�) are highly non-local because jν(u) is not a poly-
nomial, but they produce a family of fields which all satisfy local
commutativity with each other at spacelike Minkowski distance [8].

In order to reconstruct a local field φAdS(z, x) on AdS, which ful-
fils local commutativity with respect to the causal structure of AdS,
Minkowski locality is, however, not sufficient. A rather nontrivial in-
tegral identity for Bessel functions guarantees that φz(x) and φz′(x

′)
commute even at timelike distance provided (x − x′)µ(x − x′)µ <
(z − z′)2. Only this ensures that φAdS(z, x) := φz(x) is a local AdS
field.

We have seen that the reconstruction of a local AdS field from
its boundary field is a rather nontrivial issue even in the case of a
free field, and exploits properties of free fields which are not known
how to generalize to interacting fields.

In the general case, there is an alternative algebraic reconstruc-
tion [18] of local AdS observables, which is however rather abstract
and might not yield any fields in the Wightman sense. This ap-
proach makes use of the global action of the conformal group on
the Dirac completion of Minkowski spacetime, and of a correspond-
ing global coordinatization of AdS (i.e., unlike most of our previous
considerations, it does not work in a single Poincaré chart (z, x)).

The global coordinates of AdS are

X = (
1

cos ρ
~e,

sin ρ

cos ρ
~E) (3.6)

where ρ < π
2 and ~e and ~E are a 2-dimensional and a D-dimensional

unit vector, respectively. A parametrization of the universal cover-
ing of AdS is obtained by writing ~e = (cos τ, sin τ) and considering
the timelike coordinate τ ∈ R. Thus, AdS appears as a cylinder
R × BD. While the metric diverges with an overall factor cos−2 ρ

with ρ ↗ π
2 as the boundary is reached, lightlike curves hit the

boundary at a finite angle.

The boundary manifold has the structure of R× SD−1, which is
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the universal covering of the conformal Dirac completion of Minkowski
spacetime.

We consider causally complete regions K ⊂ R × SD−1, and
associate with them causally complete “wedge” regions W (K) ⊂
R×BD, which are the causal completion of K in the causal struc-
ture of the bulk. It then follows that W (K1) and W (K2) are causal
complements in the bulk of each other, or AdS transforms of each
other, iff K1 and K2 are causal complements in the boundary of
each other, or conformal transforms of each other, respectively.

Now, we assume that a CFT on R× SD−1 is given. We want to
define an associated quantum field theory on AdS. Let A(K) be the
algebras generated by CFT fields smeared in K. Then, by the pre-
ceding remarks, the operators in A(K) have the exact properties as
to be expected from AdS quantum observables localized in W (K),
namely AdS local commutativity and covariance. AdS observables
in compact regions O of AdS are localized in every wedge which
contains O, hence it is consistent to define [18]

AAdS(O) :=
⋂

W (K)⊃O
A(K) (3.7)

as the algebra of AdS observables localized in the region O. Because
any two compact regions at spacelike AdS distance belong to some
complementary pair of wedges, this definition in particular guaran-
tees local commutativity. Note that this statement were not true,
if only wedges within a Poincaré chart (z, x) were considered.

Lesson 8. Holographic reconstruction is possible in general,
but requires a global treatment in order to resolve possible
causality paradoxes with AdS-CFT.

The only problem with this definition is that the intersection
of algebras might be trivial (in which case the AdS QFT has only
wedge-localized observables). But when we know that the conformal
QFT on the boundary arises as the restriction of a bulk theory,
then the intersection of algebras (3.7) contains the original bulk
field smeared in the region O.
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3.4 Conformal perturbation theory via AdS-CFT

As we have seen, a Klein-Gordon field on AdS gives rise to a gener-
alized free conformal field. Perturbing the former by an interaction,
will perturb the latter. But perturbation theory of a generalized
free field is difficult to renormalize, because there is a continuum
of admissible counter terms associated with the continuous Källen-
Lehmann mass distribution of the generalized free field.

This suggests to perform the renormalization on the bulk, and
then take the boundary limit of the renormalized AdS field. Pre-
serving AdS symmetry, drastically reduces the free renormalization
parameters.

This program is presently studied [9]. Two observations are
emerging: first, to assume the existence of the boundary limit of the
remormalized AdS field constitutes a nontrivial additional renormal-
ization condition; and second, the resulting renormalization scheme
for the boundary field differs from the one one would have adopted
from a purely boundary (Poincaré invariant) point of view.

We do not enter into this in more detail [9]. Let us just point out
that this program can be successful only for very special interactions
of the conformal field, which “derive” from local AdS interactions.
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